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1)

2)

3)

4)

5)

6)

If (cosa,cos B,cosy) are directional cosines, then cos2¢ +cos 2 +cos2y

is equal to

A) -1 B) 0

€) 2 D) 1

Which of the following is the equation of a plane passing through three points
(A) [F-adb-ac—al=0 B) [F-a,b-d,c]=0

©) [F-a,b,e]1=0 D) (d-a,b-a,c—a)l=0

The volume of the tetrahedron whose vertices are (1, 1,1), (1, 1, 0); (1, 0, 1)
and (0, 1, 1) 1s

(A) 1/6 (B)=23

(C) 5/6 (D) 3/2

Identify the quadric x* -8y +16=0.
(A) Circle (B) Ellipse
(C) Parabola (D) Hyperbola

Which one of the following is a ruled surface?

(A) Elliptic paraboloid (B) Sphere
(C) Ellipsoid (D) Hyperboloid of one sheet
The function f(x)= : ~—2x+sinx has exactly

(x+1)

(A) One positive root

(B) One positive and one negative root
(C) No positive root

(D) Two positive root
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7)

8)

9)

10)

11)

12)
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The n™ derivative of y =sin(ax+b) is

e 7T \
(A) y,=a'sin(ax+b+ HE) (B) y =a"sin(ax+b)

: 7
(C) y,=sin(ax+b+ HE) (D) y, =a"sin(ax+b+nr)

If f£(x,y)= tan“%, theii

(A)e 1420 =0 @) f.+1,=0
(C)e L= 170 @) S+ F. =0

if (x,y)#(0,0
i gl gy O

0 it (%, y)=(0,0)

cn

A) f.(x,y)#0 B) f,(xy)#0

(C) fis continuous at (0, 0) (D) fis discontinuous at (0,0)

The slope of the tangent line to the curve that is intersection of the surface if
z=x"—y" with the plane x = 2 at the point (2, 1, 3) is

A 0 B) -2

©) 1 (D). =1

The least positive integer to which 1! + 2! + 3!+ . + 100! congruent to
modulo 12 1s

(A) O B) 3

€) 5 D) 9

The solution of x=2(mod3) and x=3(mod7) is given by

(A) x=-4(mod21) (B) x=6(mod21)

(C) x=I1(mod21) (D) x=2(mod21)

(P.T.0.)



13) The remainder when 3*° is divided by 100 is
(A) 23 B) 21
©) 19 D) 17

14) In a group (G,*) if ax e and @* = e, where e 1s the 1dentity element, then
(A) a=+e (). =g
(Ea=lra’ D) g=—/e

15) If G is a group and H is a subgroup of index 2 in G, then H is
(A) a cyclic subgroup of G (B) centre of G
(C) anormal subgroup of G (D) none of these

16) If A and B are two bounded non-empty subsets of R, then A [JB is also
bounded and Sup(A|JB) =

(A) min {Sup A, Sup B} (B) Sup A+ SupB
(C) max {Sup A, Sup B} (D) Sup A. Sup B

a+a,+..+a

17) If (a,) converges to /, then the sequence (x ) where x =

n
(A) converges to / (B) converges to 0
(C) converges to 7 (D) converges to 1
i 2 1 1/n
18) The series ZM[—]
n
(A) converges to 1 (B) converges to 0
(C) diverges : (D) converges to /2

M-2133 [4]



19)

20)

The sum of the series 1+2+25+ ol 218

935 91827

3 314
*) \E ®) \g

2 3
©) 3 (D) 5

The Dirichlet’s condition for a function £ (x) defined on the interval [-7, 7] to

be expressible in the Fourier series is that

1)  f(x)is defined in the interval (a,a+2!) and f (x) is a periodic function
with period 2/.

if)  f(x)is continuous or has only a finite number of simple discontinuities in

the interval (a,a+21).
i) f(x) has no or only a finite number of maxima or minima in the interval

(a,a+2]).
iv) all the above
(A) (1) and (i) (B) (i) and (iii)
(C) (1) and (i11) D) (v)
21) Pick out the wrong statement.
(A) A bounded function fis integrable in [a, 5], if the set of 1ts pomts of
discontinuity is finite
(B) Iff1is monotonic on [a, b], then fis integrable
(C) Abounded function fis integrable in [a, b] implies that set of its points of
discontinuity is infinite
(D) A bounded function fis integrable in [a, 4], if the set of its points of
discontinuity has a finite number of limit points
%) {J Fix a)dx}
(A) f—d—[f (x, ) ]dx (B) jhi[f (x,0)]dx
= A £ ) 0
f —[fxa)d D) 0
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1
23) The value of j x"(logx)"dx is
0

1 (_1)Jl—ln!
@B Gnrny B 1y
(=1"n! (-1)"n!
© (m+1)" (D) (m+1)"

24) If f(r,0)= f(r,—0) then the curve is symmetrical about the
(A) pole (B) initial line

(C) tangential line (D) none of these

25) If B is the beta function, then the value of £(2,1)+ B(1,2) is

(A (B) 2

©) 3 (D) 4
26) The characteristic of the ring Z [x] is

A) 1 i B) n

©) n-1 _ (D) o

27) Letn>1 be a fixed positive integer. The number of ring homomorphism from
Z into Z_ is
A) 0 (B) n
(C) n! (D) none of the above

28) Leti= J=1 and Z[i]={a+ib/a,be Z}, the ring of Gaussian integers. Define
N(a+ib)=d’+b*. Then a +ibe Z[i] is a unit if and only if
(A) N(a+ib)=1 (B) N(a+ib)>1
(C) N(a+ib)<l (D) N(a+ib)#1

29) Let p(x)=x"+1 and g(x)= x'+4x’ +6x* +4x+2. Then
(A) Both p(x) and g(x) are irreducible over Z
(B) p(x) is reducible and ¢(x) is irreducible over Z
(C) Both p(x) and g(x) are reducible over Z
(D) None of the above

M-2133 [6]



30) The number of ring isomorphism from Q onto itself is
Ayl (B) 2
() 3 (D) Infinite

‘ d .
31) Which ofthe following s the integrating factor of XC0S xd—i + y(xsinx+cosx)=1.

(A) logxsecx (B) xsecx
i
(C) —log(xsecx) (D) =

32) Is the differential equation 2xydy + (x* —2y*) =0,

1
(A) Exact and Integral factor is o
|
(B) Not exact and Integral factor is 3
. g
(C) Exact and Integral factor is -

3
(D) Not exact and Integral factor is =

d
33) If P :d_i the general solution to the differential equation

P’ +2xp’~y'p’—2xy’p=0is

(A) (y—c)(y+x2—c)(x+l+cJ=0
y

(B) (x—c)y+x*—c) y+-1—+c =}
X

(C) (y+c)y—x"—c) x—l+c =0

@) (+e)x+y —c) i gl
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34) The solution to the differential equation (y + z)dx +(z + x)dy + (x+ y)dz =0

1S

(A) xy—yz—zx=c B) Xy-yz—-7'x=c
(C) xy+yz+z=c (D) xzFyz—zx=c
35) General partial differential equation of the relation can be formed by
(A) eliminating arbitrary constants and eliminating arbitrary functions
(B) eliminating arbitrary constants or eliminating arbitrary functions
(C) eliminating only arbitrary constants
(D) eliminating arbitrary functions
36) Ifthe position of a particle moving through space is given by the vector-valued
function r(¢) = {cos 2¢,sin2¢,e™'), then the velocity of the particle at time t=0 is
(A) €0,2,-1) (B) (2,0,-1
(€) (2,21 (D) (2,2,-1
37) The convergence of which of the following method is sensitive to starting
value? :
(A) False position (B) Gauss-Seidel method
(C) Newton-Raphson method (D) All of these
38) The rate of convergence of Gauss Seidel Methodis _ that of Gauss
Jacobi Method.
(A) once (B) twice
(C) thrice (D) reciprocal
39) The angle (@) between the vectors p and g 1s
(A) cosf=LL B) cosf= 1714
P4 P>
__P4g tan@ = B4
& f=—"— D S
s e i - vl
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40)

41)

42)

[fn values of / (x) are given, then A (%) s
(A) 0 B) 1
<) 2 (D) n

Let A be a non singular matrix of order 7 >2 and B be a matrix obtained from
A by performing the row operation R/« R +2R,. Then the rank of B is

(A) 1 (B)

(C) n-1 (D) n-2

Let M be a 4x4 singular matrix such that 1, 2 and 3 are its eigenvalues. Then the
number of linearly independent eigenvectors of M2 + M + [ ,» Where [ is the identity
matrix of order 4 is '

A) 1 | (B) 2
©) 3 (D) 4

43) Let the linear transformation T:R* — R’ bedefined by T'(x, y) = (x,x+ y, y).
Then the rank of T is
(A) 1 B2
(C€) 3 (D) 4
44) Let T be a linear operator on a finite dimensional vector space U such that
Nullity of T is greater than 0. Then
(A) T is one — one and onto (B) T is one-one
(C) T is onto (D) Neither T is one-one nor onto
2 <2
45) Let A=|2 | 2|.Then the minimal polynomial of A is
2. =31
(A) x'—4x-5 B) x*+5x+4
(C) % =3x>-9x—5 D) ¥ +3x*-9x-5
P O);
M-2133 _ 9] (BL0:)



46) Let f :C — C be a complex valued function which is differentiable only at one
point z,. Then
(A) fisAnalytic atz, (B) fhas asingularitiesin C

(C) fis not analytic at z, (D) None of the above

47) Polar form of Cauchy-Riemann equations are

1 o a1y
O s 90 B = 9P
B T v
(Seevmiw e g @) SE5le00 | o

48) The range of bounded entire functions 1s
(A) C (B) all rational numbers
(C) all natural numbers (D) none of the above

49) Which of the following function is harmonic in the unit disc
(A) r’sin26 (B) rsin26

(©) Lsin26 (D) —sin26
r r
50) Pick out the function from the following list which is analytic in C

Ay 7 ®) |4
(C) zIm(z) (D) none of the above

e e
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ROUGH WORK
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Note : English version of the j ions is printed on the front cover of this booklet.




